Phase Relationships in the System SrBr₂ – SrCl₂

STANISLAW A. HODOROWICZ* AND HARRY A. EICK†

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824

Received February 3, 1982

Strontium bromide-chloride phases (SrBr_xCl_{2-x}) in the composition region 2.00 > x > 0 were prepared and examined by the Guinier powder X-ray diffraction technique. Observed and calculated powder intensities for the compositions x = 1.60, 1.40, and 0.30 are presented. The anions assume an ordered arrangement at the first two compositions and a random arrangement at the third. Two previously unreported intermediate phases at the composition about x = 1.50 and x = 0.60, both of unknown structure, were identified and their d values are reported. SrBr₂ is found to be insoluble in SrCl₂.

Introduction

Recently Clink and Eick (1) studied the EuBr₂-EuCl₂ system at specific bromide and chloride ion activities. They identified two distinctly different X-ray powder diffraction patterns for samples of the composition EuBr_{1.8}Cl_{0.2} and EuBr_{1.5}Cl_{0.5} and reported structural details on an ordered PbCl₂-type structure for the latter phase. Earlier Frit *et al.* (2, 3) had studied the system SrCl₂-SrBr₂ and reported solid solutions of the CaF₂, PbCl₂, and SrBr₂ structure types. Although they observed in some instances noncontiguous phase limits, they reported neither the existence of new structures nor additional phases. In view of the size similarities between the Sr²⁺ and Eu²⁺ ions and the isostructural nature of their bromides, it seemed surprising that in the europium phase the anions were ordered,

taken, and the results are presented below. **Experimental** The system $SrBr_{x}Cl_{2-x}$ was investigated

while in the strontium phase they were random (4-7). A systematic study of the

SrBr₂-SrCl₂ system was therefore under-

over the composition range 2.00 > x > 0. The starting materials, analytical-grade strontium dibromide and strontium dichloride, were obtained from Cerac, Inc., Milwaukee, Wisconsin, and were used as received. Twenty-six samples (total weight of each sample was 2 g) were mixed intimately in varying stoichiometric proportions and either placed in recrystallized Al₂O₃ boats (8) or sealed in evacuated quartz ampoules. All sample manipulations were performed in a glove box whose recirculated argon atmosphere was purged of oxygen and water. The containers were heated to 860°C, above the reported melting point of both reactants (9), and then cooled to 600°C at a constant rate of 0.4°C/min through the melting tran-

^{*} On leave from Department of Chemistry, Yagiellonian University, Poland.

[†] To whom correspondence should be addressed.

sition of $SrBr_2$. The samples were then annealed at this temperature for 12 hr and were subsequently cooled slowly (0.1°C/min) to room temperature.

To determine whether $SrBr_2$ vaporized from the Al_2O_3 boat into the vacuum system during heating, a sample was heated to the highest temperature used in the preparation and held there twice as long as was any reaction mixture. Mass loss was determined by difference.

Reaction products were subjected to Xray powder diffraction analysis in a 100-mm evacuated Guinier-Hägg camera equipped with a quartz monochromator to provide clean Cu $K\alpha_1$ radiation. Platinum powder (a $= 3.9238 \pm 0.0003$ Å, 25°C) was used as an internal standard. The samples were protected by a film of paraffin oil, both during transfer to the camera and during diffraction analysis. Qualitative intensity data were obtained from the Guinier-Hägg films; quantitative data were obtained on a Siemens X-ray diffractometer with nickelfiltered copper radiation. The peak heights from a number of scans were averaged, and intensities are reported relative to that of the most intense reflection.

A specimen of the composition x = 1.40was examined in a Philips EM300 transmission electron microscope in diffraction mode at 100 kV.

X-Ray powder diffraction intensities were calculated for phases of selected compositions on the basis of random and different ordered anion occupancies. Calculations were carried out on a CDC CYBER 750 computer with the program ANIFAC (10); atomic scattering factors with appropriate dispersion correction terms were obtained from the International Tables (11). Consistent with the geometry of the Guinier-Hägg camera and the diffractometer, absorption terms were not included in the calculations.

Powder diffraction data were reduced with the aid of a linear regression program

written locally. The reported lattice parameters were derived from a refinement based on 20-30 coincidence-free reflections.

Results and Discussion

X-Ray diffractograms of the reactants indicated only reflections assignable to the pure phases; lattice parameters of these phases, after heat treatment at 680°C, are listed in Table I.

The mass loss experiment indicated that $SrBr_2$ did not sublime from the boat during the course of the heating. Thus the final composition was considered identical to the initial one.

Five phase regions were identified. The

TABLE	I
-------	---

CRYSTALLOGRAPHIC DATA FOR STRONTIUM BROMIDE-CHLORIDE PHASES, $SrBr_rCl_{2-x}$

	Lattic	Space group and		
x in SrBr _z Cl _{3-x}	a	b	с	type
2.00	11.6	23(5)	7.133(3)	P4/n
1.95	11.5	90(7)	7.100(0)	SrBr ₂
1.90	11.5	75(2)	7.091(1)	(ordered)
1.85	11.5	54(4)	7.070(0)	
1.80	11.5	13(4)	7.032(9)	
1.75	11.5	07(0)	7.027(7)	
1.70	11.5	04(0)	7.018(0)	
1.65	11.5	04(0)	7.019(2)	
1.60	11.5	03(7)	7.018(1)	
1.55				
1.50	Interr	nediate pha	se (II)	?
1.45		-		
1.40	9.308(0)	7.964(9)	4.670(8)	Pbnm
1.20	9.241(1)	7.945(2)	4.643(5)	PbCl ₂
1.00	9.163(5)	7.922(1)	4.617(5)	(ordered)
0.80	9.116(9)	7.827(1)	4.585(2)	
0.70	9.090(1)	7.780(2)	4.586(1)	
0.65				
0.60	Intern	?		
0.55				
0.50	9.075(4)	7.760(1)	4.586(4)	Pbnm
0.40	9.070(4)	7.728(8)	4.585(1)	PbCl ₂
0.30	9.054(2)	7.704(2)	4.584(4)	(random)
0.20	Mixture of			
0.14	phase a	and SrCl ₂		
0.10				
0.06				
0.00		6.975(2)		Fm3m,CaFs

FIG. 1. Phase relationships in the system $\text{SrBr}_x \text{Cl}_{2-x}$ and variation of the lattice parameter versus x.

crystallographic data and structure types for regions labeled I, III, and V, together with the lattice parameters expressed as a function of composition, are presented in Table I and Fig. 1.

For values of x between $2.00 > x \ge 1.60$ the $SrBr_{x}Cl_{2-x}$ phase, designated I, crystallizes in a tetragonal SrBr₂-type structure. The strontium dibromide structure (6) contains three types of anion holes: one regular tetrahedral, as in SrCl₂, another distorted tetrahedral, and a third almost trigonal, as in SrI₂. The unit cell contains 10 formula units. Sixteen Br(1) and Br(2) atoms located in general positions 8g (space group No. 85, P4/n (12) occupy the distorted tetrahedral and trigonal coordination sites, respectively, while the four Br(3) and Br(4) atoms (special positions 2a and 2b) occupy the regular tetrahedral holes. Intensity data were calculated for four models of the composition SrBr_{1.60}Cl_{0.40}:

(a) with the chlorine atoms located only in special positions 2a and 2b,

(b) with the chlorine atoms located randomly in general positions 8g,

(c) with the chlorine atoms located randomly in positions 8g, 2a, and 2b, and

(d) with the chlorine atoms located only in the general positions of Br(2).

A comparison of the observed and calculated intensities shows agreement only for the model in which all the chlorine atoms are located in the special positions 2a and 2b. Atomic coordinates for SrBr_{1.60}Cl_{0.40} are listed in Table II, while observed and calculated intensity data. Miller indices. and interplanar d spacings are compiled in Table III. In this structure at this composition all the regular tetrahedral holes are filled with chlorine atoms, and the Br/Cl atomic ratio agrees exactly with the ratio of the number of the general positions to special ones, 4:1. Thus, over the composition region $(2.00 > x \ge 1.60)$, the tetrahedral holes, special positions 2a and 2b, selectively fill with chlorine atoms. When the chlorine composition becomes greater than 0.4, chlorine atoms would have to occupy

TABLE II

Atomic Parameters Used for Calculations of X-Ray Powder Diffraction Intensities for SrBr_{1.60}Cl_{0.40}, SrBr_{1.40}Cl_{0.60}, and SrBr_{0.30}Cl_{1.70}

		Number	r	Coordinates			
Phase	Atom	notation	n <u>x/a</u>	у/b	z/c		
SrBr _{1.60} Cl _{0.40}	Sr (1)	8g	0.1045	0.5856	0.2476		
(SrBr ₂ type)	Sr(2)	2c	0.2500	0.2500	0.8483		
	Br(1)	8g	0.1531	0.4590	0.6253		
	Br(2)	8g	0.3388	0.4572	0.0963		
	Cl(1)	2a	0.2500	0.7500	0.0000		
	Cl(2)	2 <i>b</i>	0.2500	0.7500	0.5000		
SrBr1.40Clo.60	Sr	4 <i>c</i>	0.1215	0.2622	0.2500		
(PbCl, type)	Br (1)	4 c	0.8317	0.0264	0.2500		
	Br(2) Cl	}4c	0.4321	0.1448	0.2500		
SrBrageCl1.70	Sr	4 <i>c</i>	0.1215	0.2622	0.2500		
(PbCl ₁ type)	Cl(1) Br(1)	}4c	0.8317	0.0264	0.2500		
	Cl(2) Br(2)	4c	0.4321	0.1448	0.2500		

HODOROWICZ AND EICK

TABLE III

	SrBr _{1.60} Cl _{0.60} Intensity d _{akt}			SrBr _{1.40} Cl _{0.60} Intensity d _{abt}				SrBr _{0.20} Cl _{1.70} Intensity d _{kkt}					
hkl	Obs. ^a	Calc.	Obs.	Calc.	Obs.ª	Calc.	Obs.	Calc.	hkl	Obs. ^a	Calc.	Obs.	Calc.
001	6	7.3	7.011	7.018	_	1.2		4.174	101	20	21.7	4.091	4.089
011	10	12.4	5.986	5.991	10	12.6	4.033	4.018	210	32	35.6	3.912	3.903
020	10	13.0	5.743	5.752	_	1.9	-	3.982	020	18	17.9	3.860	3.852
111	5	6.5	5.314	5.313	7	10.2	3.718	3.697	111	22	24.2	3.615	3.612
021	1	2.9	4.438	4.448	54	66.8	3.054	3.046	211	50	47.2	2.974	2.972
211	40	47.9	4.153	4.149	20	∫ 14.1	2.041	3.030	021	12	10.4	2.955	2.949
310	1	1.8	3.638	3.637	20	l 8.9	3.041	3.026	220	6	5.8	2.940	2.934
002	4	5.3	3.504	3.509	100	∫ 20.5	2 007	2.891	310	10	10.3	2.809	2.810
012	25	34.1	3.352	3.356	100	l 100.0	2.000	2.882	121	100	100.0	2.804	2.804
311	85	100.0	3.229	3.229	25	30.2	2.584	2.584	301	40	42.6	2.523	2.521
022	6	8.2	2.994	2.995	12	17.5	2.560	2.553	130]	10	10.1	2.471	2.471
231]	100	63.0	2 002	2.904		1.6		2.539	221∫	18	18.1	2.4/1	2.4/1
112	100	51.6	2.902	2.899	20	25.0	2.465	2.458	311	30	34.6	2.396	2.396
330	2	6.9	2.711	2.711	1	2.8	2.448	2.447	320	3	2.5	2.375	2.376
411	100	87.6	2 602	2.593	30	37.2	2.342	2.335	002	40	39.7	2.289	2.292
0 32∫	100	30.1	2.392	2.589	10	13.3	2.328	2.327	400	18	16.7	2.265	2.263
240	50	61.2	2.572	2.572	20	26.6	2.306	2.306	230	30	33.3	2.235	2.234
312	42	53.4	2.525	2.525	7	10.7	2.242	2.240	131	20	21.0	2.174	2.175
241	25	31.1	2.416	2.415	10	14.0	2.169	2.168	321	22	22.9	2.109	2.109
322	4	5.2	2.359	2.360		4.2		2.018	212	11	11.6	1.9756	1.9764
510	4	4.6	2.256	2.256		0.7 آ	2.020	2.015	022	6	5.9	1.9702	1.9697
042	9	11.0	2.225	2.224	10	2.5		2.015	411		0.3		1.9626
051) 341	12	13.9	2.187	2.186		4.5		2.017	330]	10	2.3	1.9550	1.9558
023	1	2.0	2.164	2.167		2.8	_		420)		8.1		1.9515
332	5	6.6	2.146	2.145	2	4.7	1.9923	1.9912	040	6	5.0	1.9260	1.9260
123	35	43.9	2.129	2.129	_	0.3		1.8519	331)	_	2.7		1.8061
521	20	23.2	2.043	2.043	2	3.6	1.8508	1.8488	222	2	2.1	1.7998	1.7989
530	3	5.4	1.9737	1.9727	•	1.7	1 0214	1.8317	041)		1.2		1.7761
313	8	10.4	1.9674	1.9676	2	2.3	1.8314	1.8307	240	7	1.4	1.7741	1.7723
531	1	2.6	1.8981	1.8991	6	8.8	1.8169	1.8167	312		3.9		1.7761
233	8	9.4	1.8867	1.8865	1	2.7	1.8130	1.8127	510		1.7	_	1.7628
522	8	10.5	1.8248	1.8246	7	9.0	1.7236	1.7232	132	. 7	7.7	1.6788	1.6803
260	4	6.7	1.8188	1.8188	1	1.9	1.7049	1.7045	241	_	1.0		1.6530
143	i	1.9	1.7926	1.7926		[1.7		1.6899	511	5	4.2	1.6448	1.6453
261	6	8.6	1.7610	1.7606	1	1 1.4	1.6896	1.6894	322		1.2		1.6495
423	ĩ	3.2	1.7303	1.7306	1	2.6	1.6858	1.6844	520	_	2.2	_	1.6388
114	5	6.9	1.7151	1.7148	5	8.0	1.6487	1.6484	402	10	10.0	1.6094	1.6105
062	3	4.6	1.6830	1.6824	13	16.3	1.6418	1.6409	232	20	20.2	1.5984	1.5997
631	. 1	2.8	1.6657	1.6658	9	10.6	1.6383	1.6387	431	6	6.9	1.5921	1.5923
550 710	10	13.5	1.6271	1.6268	7	9.1	1.5861	1.5862	521	7	8.2	1.5432	1.5431

Observed and Calculated Powder Diffraction Data for Tetragonal $SrBr_{1.60}Cl_{0.60}$ and $Orthorhombic\ SrBr_{1.40}Cl_{0.60}$ and $SrBr_{0.30}Cl_{1.70}$ Phases

" The observed intensity is the average of three independent measurements.

the general position holes; but before this happens, the structure rearranges.

In the composition region (1.60 > x > 1.40) a previously unreported intermediate phase of unknown structure, designated II, is formed. In Table IV the interplanar d spacings with associated visually estimated intensities for one preparation, SrBr_{1.50}Cl_{0.50}, are presented. Some of the

diffraction maxima obtained for this composition are broad, probably indicative that the $I \rightarrow II$ transition is a result of partial disorder in the SrBr₂-type ordered structure.

Electron diffraction patterns of some of the microcrystallites evidenced spotty ring formation, further substantiation of the disorder hypothesized from examination of the

TABLE IV

Observed X-Ray Interplanar d Spacings and Intensities for $SrBr_{1.50}Cl_{0.50}$ and $SrBr_{0.60}Cl_{1.40}$

SrBr	1.50Cl _{0.50}	SrBr _{0.60} Cl _{1.40}				
Intensity	d spacings (Å)	Intensity	d spacings (Å)			
Wb	8.106	Wb	7.878			
Mb	7.366	Wb	7.129			
Mb	5.880	Mb	5.643			
Sb	4.189	MWb	5.206			
VW	3.775	Ss	4.114			
Sb	3.661	VW	4.009			
Mb	3.641	Ms	3.948			
Ws	3.478	VW	3.689			
Ws	3.442	Ms	3.637			
Ws	3.409	VW	3.514			
Ms	3.276	vw	3.369			
Ws	3.177	vw	3.252			
vw	3.098	MWb	3.219			
Sb	3.062	Ws	3.119			
Mb	3.043	Ws	3.043			
Mb	2.968	Ss	2.993			
Sb	2.943	Ws	2.928			
vw	2.778	Wb	2.886			
Mb	2.743	Ss	2.837			
Wb	2.727	Wb	2.804			
Wb	2.646	Ms	2.707			
Ms	2.624	Wb	2.669			
Ws	2.606	VW	2.589			
Ms	2.588	Ms	2.533			
Ms	2.553	vw	2.482			
МЬ	2.443	Wb	2.457			
Sb	2.396	Ms	2.409			
Sb	2.321	Wb	2.382			
Ws	2.246	MWs	2.373			
Ws	2.157	Ws	2.340			
Ms	2.148	Ms	2.294			
Ws	2.123	MWs	2.275			
Ms	2.062	Ms	2.260			

Note. S: Strong; M: medium; W: weak; MW: medium weak; VW: very weak; b: broad; s: sharp.

Guinier data. Because the small crystallites either oxidized or hydrolyzed in the atmosphere of the microscope under high beam intensity, it was impossible to obtain singlecrystal electron diffraction patterns.

A different X-ray powder diffractogram (phase III) was obtained for the composi-

tion x = 1.40 and was found to prevail over the composition region 1.40 > x > 0.70. This powder pattern is identical to that of EuBr_{1.5}Cl_{0.5} and is indexable on the basis of an orthorhombic PbCl₂-type cell (see Table I) with parameters about 0.1 Å larger than those of the europium phase (1). In the EuBr_{1.5}Cl_{0.5} structure there are two anion positions, labeled (1) and (2), according to Baernighausen's notation (13) for EuCl₂. In this structure there are two types of anion holes—one tetrahedral and the other pyramidal. Position (2) represents the smaller tetrahedral hole; position (1) the pyramidal hole. Theoretical powder diffraction patterns were calculated for this strontium phase with the atomic coordinates reported for the europium analog, but with the chlorine atom occupancy (a) only in position (2) as reported for the europium phase, (b) only in position (1), and (c) randomly distributed between the two positions. The X-ray intensity calculations show definitely that the chlorine atoms occupy only position (2) and consequently that the anion distribution is ordered. Coordinates used for the calculations are listed in Table II; observed and calculated intensity data and interplanar dspacings are listed in Table III. This samesite occupancy pattern has been observed in other mixed halide phases, i.e., the Pb-ClBr system (14).

The EuBr_{1.5}Cl_{0.5} phase was found from single-crystal data to have one lattice parameter, b, doubled. It was assumed that the doubling reflected order in the Br(2)/ Cl(2) position; in the true doubled cell the chlorine atoms occupy a unique set of positions as do the bromine atoms. Just as in the europium case, evidence for doubling of the cell could not be found in the Guinier powder data. A number of crystals were examined with the precession and Weissenberg cameras, but none was single. An obvious structural relationship which relates the phase terminus to composition is thus not apparent from the pseudocell. Below x = 0.70 the diffraction pattern again changes. In Table IV the interplanar *d* spacings and their associated visually estimated intensities for SrBr_{0.60}Cl_{1.40} are presented. This diffraction pattern could not be indexed in an orthorhombic system with lattice parameters extrapolated from those of phase III. Broadening of some of the reflections is suggestive that this new intermediate phase (designated IV) has characteristics similar to those of II.

Another diffraction pattern (phase V) became established at x = 0.60. Preparations of $\operatorname{SrBr}_{x}\operatorname{Cl}_{2-x}$ for 0.60 > x > 0.30 were also found to crystallize in an orthorhombic system of the PbCl₂ type, but reflection intensities differed significantly from those observed for III. Based on diffraction intensity calculations, the distribution of anions in V is statistical between the two positions of space group Pbnm (see Table II). In Table III the observed and calculated intensities for SrBr_{0.30}Cl_{1.70} are compiled. If the SrBr₂ content of the reactants was decreased such that x < 0.30, the products showed diffraction lines characteristic of V and SrBr₂. A small content of the phase V was found even for a sample of the overall composition x = 0.06. On the basis of these observations and in contrast to the report of Frit *et al.* (3), we conclude that SrBr₂ is insoluble in SrCl₂. Our conclusion is consistent with that of Brauer and Knausenberger (15) for the miscibility of PbCl₂ and EuCl₂.

Clink and Eick (1) also hypothesized that in the europium system a phase of the composition EuBr_{1.8}Cl_{0.2} existed. It is apparent that a strontium analog does not exist.

In summary, five unique phase regions were found in the $SrBr_2$ - $SrCl_2$ system, with region I exhibiting the $SrBr_2$, and regions III and V the PbCl₂-type structure. In these regions, the anion distribution can be ordered or random and the ordering or randomness is related to the Br/Cl ratio. But while small concentrations of chloride ion will dissolve into the bromide lattice, occupying the tetrahedral holes, bromide ion will not dissolve into the chloride ion lattice. Between different principal regions intermediate areas (II and IV) are found. These intermediate areas are probably caused by reordering or randomization of anions.

Based on the results of selected literature data (3, 15-17) it can be concluded that phase situations similar to that described herein should be observed in other mixed halide systems. Further attempts to isolate single crystals for the SrBr_xCl_{2-x} phases are underway.

Acknowledgments

The support of the National Science Foundation, Grant DMR 7915187, is gratefully acknowledged. Program ANIFAC was graciously provided by D. Cromer, Los Alamos Scientific Laboratory.

References

- 1. B. L. CLINK AND H. A. EICK, J. Solid State Chem. 28, 321 (1979).
- B. FRIT, M. MOKAIL-CHBANY, AND P. HAGEN-MULLER, C.R. Acad. Sci. Paris Ser. C 267, 1046 (1968).
- 3. B. FRIT AND M. MOKAIL-CHBANY, J. Inorg. Nucl. Chem. 31, 2685 (1969).
- 4. R. D. SHANNON, Acta Crystallogr. Sect. A 32, 751 (1976).
- 5. W. DOELL AND W. KLEMM, Z. Anorg. Allg. Chem. 241, 239 (1939).
- J. G. SMEGGIL AND H. A. EICK, Inorg. Chem. 10, 1458 (1971).
- 7. H. P. BECK, Z. Anorg. Allg. Chem. 459, 72 (1979).
- 8. L. H. BRIXNER, Mater. Res. Bull. 11, 1453 (1976).
- "CRC Handbook of Chemistry and Physics" (R. C. Weast, Ed.), 58th ed., CRC Press, Cleveland (1977).
- 10. D. T. CROMER, private communication.
- "International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham, England (1974).
- "International Tables for X-Ray Crystallography," Vol. I, Kynoch Press, Birmingham, England (1969).
- 13. H. BAERNIGHAUSEN, Rev. Chim. Mineral. 10, 77 (1973).

- 14. J. GOODYEAR, S. A. D. ALI, AND W. J. DUFFIN, Acta Crystallogr. Sect. B 25, 796 (1969).
- 15. G. BRAUER AND M. KNAUSENBERGER, Z. Anorg. Allg. Chem. **320**, 54 (1963).
- S. VILMINOT, W. GRANIER, Z. AL ORAIBI, AND L. COT, Acta Crystallogr. Sect. B 36. 1537 (1980).
- 17. S. MEHDI AND S. MUMTAZANSARI, J. Solid State Chem. 40, 122 (1981).